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theorem and to obtain more precise results for special classes of generating
functions. An advantage of this approach is that, since the theory of the
associated functional equations is not used, the Appell expansion becomes
available as a tool for studying the- functional equations. Furthermore,
the method works equally well for a large class of the more general poly-
nomial sets defined by

A(t)e5 = E IB(t) "p.(z) ,
n =O

where B(O) = 0, B'(0) = 1 (Sheffer's "sets of type 0") and the results so
obtained could also be applied to functional equations.
To carry out the discussion outlined. here requires more information

about the reciprocal of an entire functioxi than seems to be available in the
literature. The details will be given elsewhere.

1 Sheffer, I. M., "Some Applications of Certain Polynomial Classes," Bull. Am. Math.
Soc., 47, 885-898 (1941); further references are given there.
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As part of our theory of general integration begun in earlier notes,' we
shall now establish general forms of the Fubini theorem and its extensions.
Since the Fubihi theorem deals with multiple and iterated integration,
our notation must be modified so that at least three general integrations,
attached to as many different domains, can be handled simultaneously
without confusion. For our present purposes it suffices to indicate clearly
the particular domain to which is attached each mathematical object
under consideration. Thus the different families of functions which have
to be considered on a given domain X will be denoted as @(X), @5(X),
2(X), and so on. Operations on such functions will be denoted, in a

slightly different fashion, as Ez, N2, Lz, and so on; and the results of
applying such operations to a particular function f will be denoted as
Exf(x), Nsf(x), LJ(x), and so on.2 Furthermore it will be convenient to
follow the common practice in shortening the precise phrase "the function
f whose value at x is f(x)" to the handier phrase "the function f(x)."

Let Z = X X Y be the Cartesian product of X and Y-that is, the
totality of pairs z- (x, y) where x e X and y e Y. Let E! and E, be ele-
mentary integrals defined for the respective families (2(X) and (F(Y) of
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elementary functions. We then designate by (E(X) * (C(Y) the totality
of real functions f(z) = f(x, y) with the following properties: for fixed x,
the function f(x, y) is in (Y( Y); and the integral Euf(x; y) is a function in
(Y(X). This family is obviously linear but is not guaranteed to contain
If I whenever it contains f; it fails in this respect to conform to the re-
quirements imposed upon a family of elementary functions. Further, we
designate by Ex * E, the operation which takes any function f with the
above properties into the real number ElEjf(x, y). This is a positive linear
operation which even satisfies the condition I (2) under the hypothesis

that Iff and If,, are in ((X) * Y( Y): indeed, if Jf(x, Y) _E IMf(x, Y) I,
application of I (2) to Ey yields Ey f(x, y) E Ey Ifn(x, y) for each x

and then applicati6n of I (2) to Ex yields ExEy f(x, y) I < E ExEy Ifn(x, y) J.

If Y(Z) is a linear subfamily of Y(X) * ( Y) which contains If together
with f and if E: is the contraction of Et * Ev to (Z), we therefore see that
Y(Z) and E, satisfy I (1) and I (2); and hence that E, can be regarded as
an elementary integral and (Y(Z) as the family of elementary functions
over which it is defined. There are many important examples where
(Y(Z) can be specified so as to contain all the functions h(z) = h(x, y) =
f(x)g(y) where f e Y(X) and g e ( Y), such functions h obviously being
memnbers of S(X) * ( Y). Frequently E, is given directly without ref-
erence to Ex and Ey, and has to be identified as a contraction of Ex * Ey
in other words, the relation E2 c Ex * Ey has to be proved as a theorem.
Since illustrations of these remarks are well known we shall not go into
greater detail here. We must, however, call particular attention to the
fact that in general we will have I(X) * Y(Y) # Y(Y) * e(X) and Ex *
Ey $ Ey * Ex. This lack of symmetry may well extend so far that for
some functions f we have ExEyf(x, y) d EyEJ(x, y); but, of course, the
functions h(z) = h(x, y) = f(x)g(y) where f e Y(X) and g e ( Y) are not
among them. On the other hand there are many familiar and important
cases where C(Z) can be specified so that E. * Ey and Ey * E. have identical
contractions to @(Z). In such a case we have Ezf(z) = E.Evf(x, y) =
EyE.f(x, y) and the relation of E, to Ex and Ey involves the latter in a
symmetric manner.
Turning now to the general integrations Lx and Ly associated with E,

and Ey, respectively, we shall introduce an operation Lx * Ly analogous
to the operation Ex * E, of the preceding paragraph. First we designate
by V(X) * V ( Y) the family of all extended-real functions f(z) = f(x, y)
with the following properties: for each x outside a fixed null subset Xo of
X the function f(x, y) is in V3( Y); and the integral Lyf(x, y) is a function
defined outside Xo and coinciding there with a function g in V(X). We
then define Lx * Ly as the operation which takes such a function f into the
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real number L,g(x) where g(x) = L'f(x, y) for x outside X0 and g e V(X),
observing- that this number is unaffected by the ambiguity in the determi-
nation of g. As we shall see below, the generalized Fubini theorem is
conveniently expressed in terms of the operation LX * LV-
As a preliminary to the statement and proof of the generalized Fubini

theorem, we first make the following observation:

(1) if the elementary integratiorns Ex, Ev, and E, satisfy the relation
E' c Ex * Ey, then the corresponding operations Nx, Nv, Nz are
such that N2f(z) > NxNf(x, y) for every f in @(Z).

The proof is simple. Since we have nothing to prove unless Nzf(z) < + c,
we assume the latter relation. We- can then choose f. in d(Z) so that

co~ ~ c acoD

If I < E IfnI and EExEyEff(x, y)I = ZEzIfn(z) ._ Nzf(z) + E for any
n=l n=I n=l X

given e> 0. On the other hand we have Naf(x, y) _ Nyfn(x, y) =

E E, ffn(x, y) by I (7) and I (9); and hence NxNyf(x, y) . E NxEy Ifn(x,
n=l OD n=1

y) = EEyt ffn (x, y) _ Njf(z) + by I (7), I (9), and the above. Since
n =1

E> 0 is arbitrary, the theorem is established.
We now state the first part of the generalized theorem of Fubini:

(2) (Fubini) if the elementary integrations Ex, Ey, and Ez satisfy the
relation Ei c Ex * E,,, then the corresponding general integrations
satisfy the relation Lz c L: * L4-in other words the general integral
Ljf(z) "can be evaluated as the iterated integral L1Lyf(x, y) in the
sense made precise above.

With the help of (1) the proof offers little difficulty. If f is in V(Z) we
can find fn in Y(Z) so that Nz(f(z) - fn(z)) < 2-. The positive-term

co

series E Ny(f(x, y) - fn(x, y)) has sum h(x) in @(X); and the relation
n=1 X c0

N.l(x) _ E NxNy(f(x, y) -fn(x, y)) -E Nz(f(z) - fn(z)) . E 2-n = 1
n=1 n=1 n=1

shows that hE 0(X) and hence that h is finite except on a null set Xo. If x is
outside Xo we therefore have lim Ny(f(x, y) - fn(x, y)) = 0 and hence

f(x, y) E 2(Y). We let g(x) be any function in @5(X) which is equal to

Lyf(x,.y) outside Xo. Since g(x) - Ejfn(x, y) = ILyf(x, y) - Eyfn(x,
y)J = JLv(f(x,y) -fn(x, y))|I Lyjf(x,y) -fn(x, Y)j = Ny(f(x, y) -

fn(x, y)) almost everywhere, we see that Nx(g(x) - Eyfn(x, y)) < NxNy(f(x,
y) - fn(x, y)) . Nz(f(z) -fn(z)) . 2-n. Hence g(x) is in V(X) and
Lxg(x) = lim ExEyfn(x, y) = lim Ezfn(z) = Ljf(z) in accordance with the

n---O-Co n---.*co

definitions of Lx and Lz. The remnainder of the generalized theorem of
Fubini is the following partial converse of (23:
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(3) (Fubini) if the elementary integrations E,, E,, and E. satisfy the
relation E, c E! * Ev, iff e 9)(Z), and if there exist functions fn
in j(Z) such that If < E IfnlIf then Iff e 2(X) * 2(Y) implies

n=l
fE 2(Z).

In accordance with II (14) we may suppose without loss of generality that
f,e 2(Z). The function gn = mi (1fl, Ifif + *- + ff) is also in
2(Z) in accordance with II (6), II (7). Since 0 < gn- Iff we see that
Nygn(x, y) _ Nyf(x, y) and NxNygn(x, y) . NxNvf(x, y). The fact that
If is in 2(X) * 2(Y) shows that Nyf(x, y) = Ly f(x, y) I for almost all x,
and also that Nyf(x, y) differs only on a null set from an integrable func-
tion g(x) and is therefore integrable itself. Thus N-,Nyf(x, y) = L,g(x) <

+ . On the other hand the inequalities gn < gn+l1 and Ifff< E IfnfI
n =1

show that I gnj is a monotonely increasing sequence which converges to
If f. Hence N2f(z) = lim Lzgn(z). Application of (2) to gn e 2(Z) yields

L.gn(Z) = NxNvgn(x, y) _ NxNJf(x, y). Thus Nf(z) _ NXNyf(x, y) < + c

so that f e a(Z). Since it was assumed that f e 91(Z), we conclude by
II (11) thatf e 2(Z). It is well known that the hypotheses of (3) cannot
be weakened in any essential respect. Membership in 2(X) * 2(Y) does
not imply membership in 91(Z), so that some hypothesis concerning the
measurability of f is needed in order to guarantee that f e 2(Z). The

need for the condition that If <_ EIfnf for appropriate fn in 8(Z) is
n=1

illustrated by a simple example of Saks.3 This condition is automatically
satisfied in many of the common instances of our general theory. In
particular if 1 e 2(Z) we can always takefn = 1.
Our version of the Fubini theorem can be applied directly to a situation

in the theory of locally compact topological groups.4 Let Z be such a
group, Y one of its closed subgroups and X the homogeneous space of
left cosets of Y. Selecting from each coset x a fixed element z. we see
that the equation z = z2y defines a one-to-one correspondence between
Z and X X Y, which can therefore be identified as abstract sets during
the remainder of the discussion. We let (E(X), (( Y), (Y(Z) be the families
of continuous real functions wifh compact nuclei on the respective spaces
X, Y, Z. Three elementary integrations E., Ey, E, defined over' (P(X),
(Y(Y), (Y(Z), respectively, will be said to form an admissible triple if E,
is left-invariant, ES and E, are relatively left-invariant and Ejf(z) =
E_Eyf(z'y) for allf in (S(Z). It is implicit in this definition that the integral
Eyf(z'y) is constant on each coset x and can therefore be considered as a
function on X which is, in fact, a member of (9(X). We observe now that
Et, EY, E, constitute an adissible triple if and only if, in addition to

486 PROC. N. A. S.



MATHEMA TICS: M. H. STONE

enjoying the required invariance properties, they satisfy the relation
EZ C EX * E,. To verify this we need only note that for anyf in @Y(Z) we
have f(z) = f(zxy) = f(x, y) and hence E1f(x, y) = EJf(z,y) = Ef(z'y) for
all z' in the coset x: for we then have EVf(x, y) e @(X) and the conditions
EJf(z) = E.Ejf(z'y) and Ez C E, * Ey are therefore equivalent. The
group-theoretic conditions for the existence of admissible triples are dis-
cussed by A. Weil.4 Here we direct attention to the fact that when
[Ex, EY, E2} is an admissible triple, the associated general integrations Lx,
LY, L2 (which enjoy corresponding invariance properties) must satisfy the
relation Lz C Lx * Ly in accordance with (2) above.5
We turn finally to an extension of the Fubini theorem, due originally to

Jessen in a particular case.6 With each element X of a fixed infinite class
A let there be associated a non-void set Xv,. We denote byXA the Cartesian
product of those X, with X e A. For each non-void finite part B of A let
there be given an elementary integration EXB defined for a family (@(XB)
of elementary functions on XB. Let it be assumed that the following
conditions hold:

(4) the constant function everywhere equal to 1 on XB is in @(XB) and
its elementary integral is 1;

(5) if r and A constitute a partition of B and if g E (@(Xr), then the
function f defined by f(xB) = f(xr, XA) = g(xr) is in (@(XB);

(6) if r and A constitute a partition of B, then EXB C 'Exr * ExA.

For an arbitrary infinite part A of A we can now define7 (@(XA) and EXA
satisfying I (1): we take e(XA) to be the family of those functions f on
XA such that for some partition of A into a finite set B and its complement
r and for some g in @(XB) the relation f(xA) = f(XB, xr) = g(XB) is valid;
and for each such f we put EXAf(XA) = ExBf(XB, Xr) = ExBg(XB). We
assume finally that I (2) holds for (Y(XA) and ExA.- It is then evident that
I (2) must also hold for @(XA) and ExA, whatever the infinite set A c A.
As an instance where all our assumptions can easily be verified, we cite
one equivalent to that given by Jessen :6 we take Xx to be the unit interval,
O_ X), _ 1; e(XB) to be the family of all continuous real functions on the
hypercube XB; and EXB to be the Riemann integral. In the general case
a rather simple analysis, which we shall not repeat, shows that

(7) in (4), (5) and (6) the finite set B can be replaced by an arbitrary
infinite set A c A.

We now direct attention to a remarkable property of the general integration
associated with ExA, namely:

(8) if f e Vv(XA) then there exist a partition of A into sets r and A,
where r is countable, and a function g in 2v(Xr) such that f(XA) =
f(xr, X,A) = g(xr) for almost all xA.
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Because of the mapping of VP(XA) onto V (XA) discussed in II, it suffices
to treat the case p = 1. There we determine functions fn in L(XA) such
that N(f - fn) _ 2-n. As in the proof of I (10), we find thatf and lim sup

fn = h differ only on a null set. In view of the definition of L(XA) there
exists a countable set r such that for every n the function fn(xA) = Mxr,
xX,) is constant with respect to xA. Hence h(XA) h(xr, xa) has the same
property. - The function g(xr) = h(xr, XA) is then in V(Xr), since (6) and
(7) above permit the application Qf (2). Jessen's most interesting results
concern the case where A is countable; but (8) shows that in handling a
finite or countably infinite family of functions in VP(XA) there is no loss
of generality in restricting attention to this case.. We suppose therefore
that A is the class of positive integers, and establish the following result:

(9) (Jessen) iffE P(XA),B= {a; as< n}, andr = {a; a> n},then
there exist functions gn, hn in* S4(XA) defined for almost all XA by
the relations gn(XA) = gn(XB, Xr) = LxBf(XB, Xr), hn(XA) = hn(XB,
xr) = Lxrf(XB, xr); and in SP(XA) the convergence relations gn
LXAf(XA), h. -* fare valid.

Only hn will be discussed in detail, as gn can be treated in much the same
way. Since 1 e V(XI) for any A c A, we see that Vp(X,) c V(XA) and
that all the techniques developed in II are available to us here. The
Fubini theorem is also available to us. Thus we can use this theorem to
infer first that hn exists as a member of V(XA). If f is in £V(XA), the
inequality NXA lhn(xA) V = NXB Lxrf(XB, xr) |P NXBLXTrf(XB,xr)IX =
LXBLXr |f(XB, xr) P = LXA If(XA) P = NXA If(XA) V < + 'c shows that hn is
also in Vp(XA). If f is in £VP(XA) we can find for any e > 0 a function f
in Vp(XA) such that f(XA) = f(XB, xr) is constant with respect to x1, for
some choice ofB= { a; a_ m I while Np(f - f) < ',. Using the notations
of II, we choosef so that g = c(f) (XA) C 3(XA) and N(f -g) . &
Since B = { a; a < m I can be chosen so that g(xA) = g(XB, xr) is constant
with respect to xr, we see thatf = T'(g) has a like property and belongs -to

Vp3(XA). If a has been taken sufficiently small, it is clear that Np(f - f) <
e by virtue of the continuity of T. Now if n > m, m being the integer

just determined in our choice of f, we see that hn(XA) = Lxr(XB, xr) =

f(XB, xr) = f(xA)-because f(xB, xr) is constant with respect to xr, r =

{a; a > n}. Hence we have Np(f - hn) = Np(f- +hn- hn) . Np(f-
f) + NP(hn- hn) for n > m, by Minkowski's inequality. By our choice of
fwe have Np (ff-f) < 'Eand Np(hn- hn) = (LXA I hn(XA) - h(XA) ))1/P
(LXBLXr Lxr(f(XB, xr) - f(XB,xv)) P)1/P = (LXB Lxr(f(XB, xr) - f(XB,
Xr) P) 1/P < (LXBLxr |f(XB, Xr) - f(XB, Xr) P) 1/p = (LXA |f(XA) - f(XA) P) 1/p
Np(f - f) < ',. Hence Np(f - hn) _ e for n > m, as we wished to show.
A further result of Jessen will complete our discussion, namely:
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(10) (Jessen) the relktions lim gn(xA) = LxAf(XA), lin hn/(xA)' = f(xA)
n-*o n

hold almost everywhere in the pointwise sense.

We consider only hn, modeling our treatment on that already given by
Jessen6 for gn. Since 3V,(XA) C 2(XA) we may suppose that p = 1 in the
present instance. The sequence {h.}, being convergent to f in S(XA) has
a subsequence which converges almost everywhere to f in the pointwise
sense. Consequently h = lim sup h. > f almost everywhere. By a

* no
method which will be sketched below we show that at almost every point
of the set XX = lxA; h(xA) > X} we must have f(xA) 2 X. It then follows
that lim sup hn(xA) = f(XA) almost everywhere. Replacing f by -f, we

have to replace h. by -h,. We therefore have lim inf h.(XA) = -lim sup

(-h(xA)) = -(-f(XA)) = f(XA), a relation which completes the proof of
the theorem. Reverting now to the detailed study of XX, we let fx,P e (XA)
be the characteristic function of the set lxA; hn+p(xA) > X, hk(xA) < X for
n_ k < n + p-l }, n = 1, 2, 3, .. and p=0, 1,2. The charac-

teristic function of XX is then expressible as fX = lim F, e V(XA). Since
flz vMO

hAis constant with respect to xi for I > k + 1 we see that hn+p and f,p are
both constant with respect to xi for I > n + p + 1. Let g be an arbitrary
function in V(XA) which is constant with respect to xi for I _ m + 1 and
which satisfies the inequalities 0 . g < 1. Taking n > m we note that
fX,g is constant with respect to xi for I > n + p + 1 and hence can be
multiplied into both members of the equation hn+,p(xA) = Lxrf(xB, xr) to
yield hn+p(xA)f p(xA)g(xA) = Lxr[f(XB, xr)fp(XB, xr)g(XB, xr)]. Applying
L = LXA to both members of the latter equation we obtain L(h,+;f g) =
L( ff,pg). Since hn+p > X on the set wheref,p = 1 it follows that XL(fXpg) _
L(ff xpg) and hence.that XL(fXg) . L(ffXg). It is not difficult to determine
a sequence of functions g of the kind admitted here which converges
boundedly to the characteristic function g)-E of the set IXA; f(XA) <
X - e}, exception being made as usual for points of a null set. Passage
to the limit in. the above inequality therefore yields XL(fXg-) . L(ff
ge-) _ (X - e)L(fXge-). Hence e > Oimplies L(fXg-E) = 0; in other
words the part of XX wheref(xA) < X - e is a null set. Thus we must have
f(XA) >- almost everywhere on XA, as we claimed above.

1 Stone, M. H., "Notes on Integration, I," these PROCEEDINGS, 34, 336-342 (1948);
"Notes on Integration, II," Ibid. 447-455 (1948); cited here as I and II, respectively.

2 The symbol x in these expressions denotes a bound variable.
3 Saks, S., Theory of the Integral, 2nd revised ed., Warszawa-Lwow, 1937, pp. 87-88.
4 Weil, A., L'Integration dans les Groupes Topologiques et ses Applications, Paris, 1938,

pp. 30-45, especially 42-45.
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'While, this result resembles one established by Ambrose, W., "Direct Sum Theorem
for Haar Measures," Trans. Am. Math. Soc., 61, 122-127 (1947), it is actually identical
with the latter only in the case whereZ is separable. The reason for the distinction which
must be made in the non-separable case is indicated in the fourth footnote of II.

6 Jessen, B., "The Theory of Integration in a Space of an Infinite Number of Dimen-
sions," Acta Mathematica, 63, 249-323 (1934), especially 272-280.

7 ((XA) and ExA have in a general way the character of "projective limits" of the
given E(XB) and ExB, the conditions (5) and (6) being "consistency conditions" essential
to the constructive process.

ERRATUM

The eleventh (last) pentad of the second line of the value for 340!/1083
on p. 409 (August) of volume 34 of these PROCEEDINGS should read 85229
in place of 58229.
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